Light in diagnosis, therapy and surgery

Light and optical techniques have made profound impacts on modern medicine, with numerous lasers and optical devices currently being used in clinical practice to assess health and treat disease. Recent advances in biomedical optics have enabled increasingly sophisticated technologies — in particular, those that integrate photonics with nanotechnology, biomaterials and genetic engineering. In this Review, we revisit the fundamentals of light–matter interactions, describe the applications of light in imaging, diagnosis, therapy and surgery, overview their clinical use, and discuss the promise of emerging light-based technologies.

This is a preview of subscription content, access via your institution

Access options

Access Nature and 54 other Nature Portfolio journals

Get Nature+, our best-value online-access subscription

cancel any time

Subscribe to this journal

Receive 12 digital issues and online access to articles

133,45 € per year

only 11,12 € per issue

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Zaret, M. M. et al. Ocular lesions produced by an optical maser (laser). Science134, 1525–1526 (1961). ArticleCASPubMedGoogle Scholar
  2. Goldman, L. & Wilson, R. G. Treatment of basal cell epithelioma by laser radiation. JAMA189, 773–775 (1964). ArticleCASPubMedGoogle Scholar
  3. Sakimoto, T., Rosenblatt, M. I. & Azar, D. T. Laser eye surgery for refractive errors. Lancet367, 1432–1447 (2006). ArticlePubMedGoogle Scholar
  4. Marshall, J., Trokel, S., Rothery, S. & Krueger, R. Long-term healing of the central cornea after photorefractive keratectomy using an exicmer laser. Opthalmology95, 1411–1421 (1988). ArticleCASGoogle Scholar
  5. Solomon, K. D. et al. LASIK world literature review: quality of life and patient satisfaction. Ophthalmology116, 691–701 (2009). ArticlePubMedGoogle Scholar
  6. Palanker, D. V. et al. Femtosecond laser-assisted cataract surgery with integrated optical coherence tomography. Sci. Transl. Med.2, 58ra85 (2010). ArticlePubMedGoogle Scholar
  7. Karabag, R. Y. Retinal tears and rhegmatogenous retinal detachment after intravitreal injections: its prevalence and case reports. Digit. J. Ophthalmol.21, 8–10 (2015). PubMedPubMed CentralGoogle Scholar
  8. Sternberg, P. Subfoveal neovascular lesions in age-related macular degeneration. Guidelines for evaluation and treatment in the macular photocoagulation study. Arch. Ophthalmol.109, 1242–1257 (1991). ArticleGoogle Scholar
  9. Tanzi, E. L., Lupton, J. R. & Alster, T. S. Lasers in dermatology: four decades of progress. J. Am. Acad. Dermatol.49, 1–34 (2003). ArticlePubMedGoogle Scholar
  10. Anderson, R. R. & Parrish, J. A. Selective photothermolysis: precise microsurgery by selective absorption of pulsed radiation. Science220, 524–527 (1983). ArticleCASPubMedGoogle Scholar
  11. Anderson, R. R. & Parrish, J. A. Microvasculature can be selectively damaged using dye lasers: a basic theory and experimental evidence in human skin. Lasers Surg. Med.1, 263–276 (1981). ArticleCASPubMedGoogle Scholar
  12. Nelson, J. S. et al. Dynamic epidermal cooling during pulsed laser treatment of port-wine stain. A new methodology with preliminary clinical evaluation. Arch. Dermatol.131, 695–700 (1995). ArticleCASPubMedGoogle Scholar
  13. Fitzpatrick, R. E., Goldman, M. P., Satur, N. M. & Tope, W. D. Pulsed carbon dioxide laser resurfacing of photo-aged facial skin. Arch. Dermatol.132, 395–402 (1996). ArticleCASPubMedGoogle Scholar
  14. Manstein, D., Herron, G. S., Sink, R. K., Tanner, H. & Anderson, R. R. Fractional photothermolysis: a new concept for cutaneous remodeling using microscopic patterns of thermal injury. Lasers Surg. Med.34, 426–438 (2004). ArticlePubMedGoogle Scholar
  15. Sherling, M. et al. Consensus recommendations on the use of an erbium-doped 1,550-nm fractionated laser and its applications in dermatologic laser surgery. Dermatologic Surg.36, 461–469 (2010). ArticleCASGoogle Scholar
  16. Kositratna, G., Evers, M., Sajjadi, A. & Manstein, D. Rapid fibrin plug formation within cutaneous ablative fractional CO2 laser lesions. Lasers Surg. Med.48, 125–132 (2016). ArticlePubMedGoogle Scholar
  17. Kilmer, S. L. & Anderson, R. R. Clinical use of the Q-switched ruby and the Q-switched Nd:YAG (1064 nm and 532 nm) lasers for treatment of tattoos. J. Dermatol. Surg. Oncol.19, 330–338 (1993). ArticleCASPubMedGoogle Scholar
  18. Brauer, J. A. et al. Successful and rapid treatment of blue and green tattoo pigment with a novel picosecond laser. Arch. Dermatol.148, 820–823 (2012). ArticlePubMedGoogle Scholar
  19. Grossman, M. C., Dierickx, C., Farinelli, W., Flotte, T. & Anderson, R. R. Damage to hair follicles by normal-mode ruby laser pulses. J. Am. Acad. Dermatol.35, 889–894 (1996). ArticleCASPubMedGoogle Scholar
  20. Metelitsa, A. I. & Green, J. B. Home-use laser and light devices for the skin: an update. Semin. Cutan. Med. Surg.30, 144–147 (2011). ArticleCASPubMedGoogle Scholar
  21. Jackson, S. D. Towards high-power mid-infrared emission from a fibre laser. Nat. Photon.6, 423–431 (2012). ArticleCASGoogle Scholar
  22. Gilling, P., Cass, C., Cresswell, M. & Fraundorfer, M. Holmium laser resection of the prostate: preliminary results of a new method for the treatment of benign prostatic hyperplasia. Urology47, 48–51 (1996). ArticleCASPubMedGoogle Scholar
  23. Malek, R. S., Kuntzman, R. S. & Barrett, D. M. High-power potassium-titanyl-phosphate (KTP/532) laser vaporization prostatectomy: 24 hours later. Urology51, 254–256 (1998). ArticleCASPubMedGoogle Scholar
  24. Sofer, M. et al. Holmium:YAG laser lithotripsy for upper urinary tract calculi in 598 patients. J. Urol.167, 31–34 (2002). ArticlePubMedGoogle Scholar
  25. Ell, C., Lux, G., Hochberger, J., Müller, D. & Demling, L. Laser lithotripsy of common bile duct stones. Gut29, 746–751 (1988). ArticleCASPubMedPubMed CentralGoogle Scholar
  26. Wazni, O. et al. Lead extraction in the contemporary setting: the LExICon study: an observational retrospective study of consecutive laser lead extractions. J. Am. Coll. Cardiol.55, 579–586 (2010). ArticleCASPubMedGoogle Scholar
  27. Wilkoff, B. L. et al. Pacemaker lead extraction with the laser sheath: results of the pacing lead extraction with the excimer sheath (PLEXES) trial. J. Am. Coll. Cardiol.33, 1671–1676 (1999). ArticleCASPubMedGoogle Scholar
  28. Grundfest, W. S. et al. Laser ablation of human atherosclerotic plaque without adjacent tissue injury. J. Am. Coll. Cardiol.5, 929–933 (1985). ArticleCASPubMedGoogle Scholar
  29. Min, R. J., Khilnani, N. & Zimmet, S. E. Endovenous laser treatment of saphenous vein reflux: long-term results. J. Vasc. Interv. Radiol.14, 991–996 (2003). ArticlePubMedGoogle Scholar
  30. Proebstle, T. M., Moehler, T. & Herdemann, S. Reduced recanalization rates of the great saphenous vein after endovenous laser treatment with increased energy dosing: definition of a threshold for the endovenous fluence equivalent. J. Vasc. Surg.44, 834–839 (2006). ArticlePubMedGoogle Scholar
  31. Mccoppin, H. H., Hovenic, W. W. & Wheeland, R. G. Laser treatment of superficial leg veins. Dermatologic Surg.37, 729–741 (2011). CASGoogle Scholar
  32. Hibst, R. & Keller, U. Experimental studies of the application of the Er:YAG laser on dental hard substances: I. Measurement of the ablation rate. Lasers Surg. Med.9, 338–344 (1989). ArticleCASPubMedGoogle Scholar
  33. Wigdor, H. A. et al. Lasers in dentistry. Lasers Surg. Med.16, 103–133 (1995). ArticleCASPubMedGoogle Scholar
  34. Strong, M. S. & Jako, G. J. Laser surgery in the larynx. Early clinical experience with continuous CO2 laser. Ann. Otol. Rhinol. Laryngol.81, 792–798 (1972). ArticleGoogle Scholar
  35. Amin, Z. et al. Hepatic metastases: interstitial laser photocoagulation with real-time US monitoring and dynamic CT evaluation of treatment. Radiology187, 339–347 (1993). ArticleCASPubMedGoogle Scholar
  36. Mellow, M. H. & Pinkas, H. Endoscopic laser therapy for malignancies affecting the esophagus and gastroesophageal junction: analysis of technical and functional efficacy. Arch. Intern. Med.145, 1443–1446 (1985). ArticleCASPubMedGoogle Scholar
  37. Wahidi, M. M., Herth, F. J. F. & Ernst, A. State of the art: interventional pulmonology. Chest131, 261–274 (2007). ArticlePubMedGoogle Scholar
  38. Maisels, M. J. & McDonagh, A. F. Phototherapy for neonatal jaundice. N. Engl. J. Med.358, 920–928 (2008). ArticleCASPubMedGoogle Scholar
  39. Schwarz, T. & Beissert, S. Milestones in photoimmunology. J. Invest. Dermatol.133, E7–E10 (2013). ArticlePubMedGoogle Scholar
  40. Gläser, R. et al. UV-B radiation induces the expression of antimicrobial peptides in human keratinocytes in vitro and in vivo. J. Allergy Clin. Immunol.123, 1117–1123 (2009). ArticlePubMedCASGoogle Scholar
  41. Liu, P. T. et al. Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science311, 1770–1773 (2006). ArticleCASPubMedGoogle Scholar
  42. Kripke, M. L. Antigenicity of murine skin tumors induced by ultraviolet light. J. Natl Cancer Inst.53, 1333–1336 (1974). ArticleCASPubMedGoogle Scholar
  43. Stapelberg, M. P. F., Williams, R. B. H., Byrne, S. N. & Halliday, G. M. The alternative complement pathway seems to be a UVA sensor that leads to systemic immunosuppression. J. Invest. Dermatol.129, 2694–2701 (2009). ArticleCASPubMedGoogle Scholar
  44. Lim, H. W. et al. Phototherapy in dermatology: a call for action. J. Am. Acad. Dermatol.72, 1078–1080 (2015). ArticlePubMedGoogle Scholar
  45. Johnson-Huang, L. M. et al. Effective narrow-band UVB radiation therapy suppresses the IL-23/IL-17 axis in normalized psoriasis plaques. J. Invest. Dermatol.130, 2654–2663 (2010). ArticleCASPubMedPubMed CentralGoogle Scholar
  46. Stern, R. S. Psoralen and ultraviolet A light therapy for psoriasis. N. Engl. J. Med.357, 682–690 (2007). ArticleCASPubMedGoogle Scholar
  47. Norval, M. & Halliday, G. M. The consequences of UV-induced immunosuppression for human health. Photochem. Photobiol.87, 965–977 (2011). ArticleCASPubMedGoogle Scholar
  48. Becklund, B. R., Severson, K. S., Vang, S.V & DeLuca, H. F. UV radiation suppresses experimental autoimmune encephalomyelitis independent of vitamin D production. Proc. Natl Acad. Sci. USA107, 6418–6423 (2010). ArticleCASPubMedPubMed CentralGoogle Scholar
  49. Geldenhuys, S. et al. Ultraviolet radiation suppresses obesity and symptoms of metabolic syndrome independently of vitamin D in mice fed a high-fat diet. Diabetes63, 3759–3769 (2014). ArticleCASPubMedGoogle Scholar
  50. Slusher, T. M. et al. A randomized trial of phototherapy with filtered sunlight in African neonates. N. Engl. J. Med.373, 1115–1124 (2015). ArticleCASPubMedGoogle Scholar
  51. Anderson, J. L., Glod, C. A., Dai, J., Cao, Y. & Lockley, S. W. Lux vs. wavelength in light treatment of seasonal affective disorder. Acta Psychiatr. Scand.120, 203–212 (2009). ArticleCASPubMedGoogle Scholar
  52. LeGates, T. A., Fernandez, D. C. & Hattar, S. Light as a central modulator of circadian rhythms, sleep and affect. Nat. Rev. Neurosci.15, 443–454 (2014). ArticleCASPubMedPubMed CentralGoogle Scholar
  53. Golden, R. N. et al. The efficacy of light therapy in the treatment of mood disorders: a review and meta-analysis of the evidence. Am. J. Psychiatry162, 656–662 (2005). ArticlePubMedGoogle Scholar
  54. Lockley, S. W., Brainard, G. C. & Czeisler, C. A. High sensitivity of the human circadian melatonin rhythm to resetting by short wavelength light. J. Clin. Endocrinol. Metab.88, 4502–4505 (2003). ArticleCASPubMedGoogle Scholar
  55. Lam, R. W. et al. Efficacy of bright light treatment, fluoxetine, and the combination in patients with nonseasonal major depressive disorder. JAMA Psychiatry73, 56–63 (2015). ArticleGoogle Scholar
  56. Dai, T. et al. Blue light rescues mice from potentially fatal Pseudomonas aeruginosa burn infection: efficacy, safety, and mechanism of action. Antimicrob. Agents Chemother.57, 1238–1245 (2013). ArticleCASPubMedPubMed CentralGoogle Scholar
  57. Dai, T. et al. Blue light for infectious diseases: Propionibacterium acnes, Helicobacter pylori, and beyond?. Drug Resist. Updates15, 233–236 (2012). ArticleGoogle Scholar
  58. Wu, P. C., Tsai, C. L., Wu, H. L., Yang, Y. H. & Kuo, H. K. Outdoor activity during class recess reduces myopia onset and progression in school children. Ophthalmology120, 1080–1085 (2013). ArticlePubMedGoogle Scholar
  59. Smith, E. L., Hung, L. F. & Huang, J. Protective effects of high ambient lighting on the development of form-deprivation myopia in rhesus monkeys. Investig. Ophthalmol. Vis. Sci.53, 421–428 (2012). ArticleGoogle Scholar
  60. Wang, J., Li, B. & Wu, M. X. Effective and lesion-free cutaneous influenza vaccination. Proc. Natl Acad. Sci. USA112, 5005–5010 (2015). ArticleCASPubMedPubMed CentralGoogle Scholar
  61. Avci, P., Gupta, G. K., Clark, J., Wikonkal, N. & Hamblin, M. R. Low-level laser (light) therapy (LLLT) for treatment of hair loss. Lasers Surg. Med. Surg. Med.46, 144–151 (2014). ArticleGoogle Scholar
  62. Chung, H. et al. The nuts and bolts of low-level laser (light) therapy. Ann. Biomed. Eng.40, 516–533 (2012). ArticlePubMedGoogle Scholar
  63. Chow, R. T., Johnson, M. I., Lopes-Martins, R. A. & Bjordal, J. M. Efficacy of low-level laser therapy in the management of neck pain: a systematic review and meta-analysis of randomised placebo or active-treatment controlled trials. Lancet374, 1897–1908 (2009). ArticlePubMedGoogle Scholar
  64. Naeser, M. A. et al. Significant improvements in cognitive performance post-transcranial, red/near-infrared light-emitting diode treatments in chronic, mild traumatic brain injury: open-protocol study. J. Neurotrauma31, 1008–1017 (2014). ArticlePubMedPubMed CentralGoogle Scholar
  65. Arany, P. R. et al. Photoactivation of endogenous latent transforming growth factor-β1 directs dental stem cell differentiation for regeneration. Sci. Transl. Med.6, 238ra69 (2014). ArticlePubMedPubMed CentralCASGoogle Scholar
  66. Shapiro, M. G., Homma, K., Villarreal, S., Richter, C.-P. & Bezanilla, F. Infrared light excites cells by changing their electrical capacitance. Nat. Commun.3, 736 (2012).
  67. Jenkins, M. W. et al. Optical pacing of the embryonic heart. Nat. Photon.4, 623–626 (2010). ArticleCASGoogle Scholar
  68. Teudt, I. U., Nevel, A. E., Izzo, A. D., Walsh, J. T. & Richter, C.-P. Optical stimulation of the facial nerve: a new monitoring technique?. Laryngoscope117, 1641–1647 (2007). ArticlePubMedPubMed CentralGoogle Scholar
  69. Wollensak, G., Spoerl, E. & Seiler, T. Stress-strain measurements of human and porcine corneas after riboflavin-ultraviolet-A-induced cross-linking. J. Cataract Refract. Surg.29, 1780–1785 (2003). ArticlePubMedGoogle Scholar
  70. Lang, N. et al. A blood-resistant surgical glue for minimally invasive repair of vessels and heart defects. Sci. Transl. Med.6, 218ra6 (2014). ArticlePubMedPubMed CentralCASGoogle Scholar
  71. Roche, E. T. et al. A light-reflecting balloon catheter for atraumatic tissue defect repair. Sci. Transl. Med.7, 306ra149 (2015). ArticlePubMedGoogle Scholar
  72. Du, Y., Lo, E., Ali, S. & Khademhosseini, A. Directed assembly of cell-laden microgels for fabrication of 3D tissue constructs. Proc. Natl Acad. Sci. USA105, 9522–9527 (2008). ArticleCASPubMedPubMed CentralGoogle Scholar
  73. Hillel, A. T. et al. Photoactivated composite biomaterial for soft tissue restoration in rodents and in humans. Sci. Transl. Med.3, 93ra67 (2011). ArticleCASPubMedPubMed CentralGoogle Scholar
  74. Castano, A. P., Mroz, P. & Hamblin, M. R. Photodynamic therapy and anti-tumour immunity. Nat. Rev. Cancer6, 535–545 (2006). ArticleCASPubMedPubMed CentralGoogle Scholar
  75. Agostinis, P. et al. Photodynamic therapy of cancer: an update. CA Cancer J.Clin.61, 250–281 (2011). ArticlePubMedPubMed CentralGoogle Scholar
  76. Spring, B. Q., Rizvi, I., Xu, N. & Hasan, T. The role of photodynamic therapy in overcoming cancer drug resistance. Photochem. Photobiol. Sci.14, 1476–1491 (2015). ArticleCASPubMedPubMed CentralGoogle Scholar
  77. Wan, M. T. & Lin, J. Y. Current evidence and applications of photodynamic therapy in dermatology. Clin. Cosmet. Investig. Dermatol.7, 145–163 (2014). PubMedPubMed CentralGoogle Scholar
  78. Lozano, M., Cid, J. & Müller, T. H. Plasma treated with methylene blue and light: clinical efficacy and safety profile. Transfus. Med. Rev.27, 235–240 (2013). ArticlePubMedGoogle Scholar
  79. Yang, Y. et al. Thienopyrrole-expanded BODIPY as a potential NIR photosensitizer for photodynamic therapy. Chem. Commun.49, 3940–3942 (2013). ArticleCASGoogle Scholar
  80. Idris, N. M. et al. In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers. Nat. Med.18, 1580–1585 (2012). ArticleCASPubMedGoogle Scholar
  81. Kim, Y. R. et al. Bioluminescence-activated deep-tissue photodynamic therapy of cancer. Theranostics5, 805–817 (2015). ArticleCASPubMedPubMed CentralGoogle Scholar
  82. Hildebrandt, B. The cellular and molecular basis of hyperthermia. Crit. Rev. Oncol. Hematol.43, 33–56 (2002). ArticlePubMedGoogle Scholar
  83. Jin, C. S., Lovell, J. F., Chen, J. & Zheng, G. Ablation of hypoxic tumors with dose-equivalent photothermal, but not photodynamic, therapy using a nanostructured porphyrin assembly. ACS Nano7, 2541–2550 (2013). ArticleCASPubMedPubMed CentralGoogle Scholar
  84. Huang, X., El-Sayed, I. H., Qian, W. & El-Sayed, M. A. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J. Am. Chem. Soc.128, 2115–2120 (2006). ArticleCASPubMedGoogle Scholar
  85. Cheng, L., Yang, K., Chen, Q. & Liu, Z. Organic stealth nanoparticles for highly effective in vivo near-infrared photothermal therapy of cancer. ACS Nano6, 5605–5613 (2012). ArticleCASPubMedGoogle Scholar
  86. Lovell, J. F. et al. Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents. Nat. Mater.10, 324–332 (2011). ArticleCASPubMedGoogle Scholar
  87. Shaikh, N., Hoberman, A., Kaleida, P. H., Ploof, D. L. & Paradise, J. L. Diagnosing otitis media — otoscopy and cerumen removal. N. Engl. J. Med.362, e62 (2010).
  88. Thangaratinam, S., Brown, K., Zamora, J., Khan, K. S. & Ewer, A. K. Pulse oximetry screening for critical congenital heart defects in asymptomatic newborn babies: a systematic review and meta-analysis. Lancet379, 2459–2464 (2012). ArticlePubMedGoogle Scholar
  89. Boas, D. A., Elwell, C. E., Ferrari, M. & Taga, G. Twenty years of functional near-infrared spectroscopy: introduction for the special issue. Neuroimage85, 1–5 (2014). ArticlePubMedGoogle Scholar
  90. Schwarz, R. A. et al. Noninvasive evaluation of oral lesions using depth-sensitive optical spectroscopy. Cancer115, 1669–1679 (2009). ArticlePubMedGoogle Scholar
  91. Humeau-Heurtier, A., Guerreschi, E., Abraham, P. & Mahé, G. Relevance of laser doppler and laser speckle techniques for assessing vascular function: state of the art and future trends. IEEE Trans. Biomed. Eng.60, 659–666 (2013). ArticleCASPubMedGoogle Scholar
  92. Bolay, H. et al. Intrinsic brain activity triggers trigeminal meningeal afferents in a migraine model. Nat. Med.8, 136–142 (2002). ArticleCASPubMedGoogle Scholar
  93. Boppart, S. A. & Richards-Kortum, R. Point-of-care and point-of-procedure optical imaging technologies for primary care and global health. Sci. Transl. Med.6, 253rv2 (2014).
  94. Greenbaum, A. et al. Wide-field computational imaging of pathology slides using lens-free on-chip microscopy. Sci. Transl. Med.6, 267ra175 (2014). ArticlePubMedGoogle Scholar
  95. Shen, L., Hagen, J. A. & Papautsky, I. Point-of-care colorimetric detection with a smartphone. Lab Chip12, 4240–4243 (2012). ArticleCASPubMedGoogle Scholar
  96. Ming, K. et al. Integrated quantum dot barcode smartphone optical device for wireless multiplexed diagnosis of infected patients. ACS Nano9, 3060–3074 (2015). ArticleCASPubMedGoogle Scholar
  97. Ambrosio, M. V. D. et al. Point-of-care quantification of blood-borne filarial parasites with a mobile phone microscope. Sci. Transl. Med.7, 286re4 (2015). ArticlePubMedGoogle Scholar
  98. Bao, J. & Bawendi, M. G. A colloidal quantum dot spectrometer. Nature523, 67–70 (2013). ArticleCASGoogle Scholar
  99. Shelton, R. L. et al. Optical coherence tomography for advanced screening in the primary care office. J. Biophotonics7, 525–533 (2014). ArticlePubMedGoogle Scholar
  100. de la Rica, R. & Stevens, M. M. Plasmonic ELISA for the ultrasensitive detection of disease biomarkers with the naked eye. Nat. Nanotech.8, 1759–1764 (2012). Google Scholar
  101. Chen, Z. et al. Protein microarrays with carbon nanotubes as multicolor Raman labels. Nat. Biotechnol.26, 1285–1292 (2008). ArticleCASPubMedGoogle Scholar
  102. Armani, A. M., Kulkarni, R. P., Fraser, S. E., Flagan, R. C. & Vahala, K. J. Detection with optical microcavities. Science317, 783–787 (2007). ArticleCASPubMedGoogle Scholar
  103. Fan, X. & Yun, S.-H. The potential of optofluidic biolasers. Nat. Methods11, 141–147 (2014). ArticleCASPubMedPubMed CentralGoogle Scholar
  104. Crosetto, N., Bienko, M. & van Oudenaarden, A. Spatially resolved transcriptomics and beyond. Nat. Rev. Genet.16, 57–66 (2015). ArticleCASPubMedGoogle Scholar
  105. Friedman, A. A., Letai, A., Fisher, D. E. & Flaherty, K. T. Precision medicine for cancer with next-generation functional diagnostics. Nat. Rev. Cancer15, 747–756 (2015). ArticleCASPubMedPubMed CentralGoogle Scholar
  106. Veitch, A. M., Uedo, N., Yao, K. & East, J. E. Optimizing early upper gastrointestinal cancer detection at endoscopy. Nat. Rev. Gastroenterol. Hepatol.12, 660–667 (2015). ArticlePubMedGoogle Scholar
  107. Deepak, P. et al. Incremental diagnostic yield of chromoendoscopy and outcomes in inflammatory bowel disease patients with a history of colorectal dysplasia on white-light endoscopy. Gastrointest. Endosc.83, 1005–1012 (2016). ArticlePubMedGoogle Scholar
  108. Iddan, G., Meron, G., Glukhovsky, A. & Swain, P. Wireless capsule endoscopy. Nature405, 417 (2000).
  109. Liao, Z., Gao, R., Xu, C. & Li, Z.-S. Indications and detection, completion, and retention rates of small-bowel capsule endoscopy: a systematic review. Gastrointest. Endosc.71, 280–286 (2010). ArticlePubMedGoogle Scholar
  110. Drexler, W. & Fujimoto, J. G. State-of-the-art retinal optical coherence tomography. Prog. Retin. Eye Res.27, 45–88 (2008). ArticlePubMedGoogle Scholar
  111. Huang, D. et al. Optical coherence tomography. Science254, 1178–1181 (1991). ArticleCASPubMedPubMed CentralGoogle Scholar
  112. Yun, S. H. et al. Comprehensive volumetric optical microscopy in vivo. Nat. Med.12, 1429–1433 (2006). ArticleCASPubMedPubMed CentralGoogle Scholar
  113. Tearney, G. J. et al. Consensus standards for acquisition, measurement, and reporting of intravascular optical coherence tomography studies: a report from the International Working Group for Intravascular Optical Coherence Tomography Standardization and Validation. J. Am. Coll. Cardiol.59, 1058–1072 (2012). ArticlePubMedGoogle Scholar
  114. Prati, F. et al. Expert review document part 2: methodology, terminology and clinical applications of optical coherence tomography for the assessment of interventional procedures. Eur. Heart J.33, 2513–2520 (2012). ArticlePubMedPubMed CentralGoogle Scholar
  115. Bouma, B. E., Tearney, G. J., Compton, C. C. & Nishioka, N. S. High-resolution imaging of the human esophagus and stomach in vivo using optical coherence tomography. Gastrointest. Endosc.51, 467–474 (2000). ArticleCASPubMedGoogle Scholar
  116. Liu, L. et al. Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography. Nat. Med.17, 1010–1014 (2011). ArticleCASPubMedPubMed CentralGoogle Scholar
  117. Yoo, H. et al. Intra-arterial catheter for simultaneous microstructural and molecular imaging in vivo. Nat. Med.17, 1680–1684 (2011). ArticleCASPubMedPubMed CentralGoogle Scholar
  118. Roblyer, D. et al. Optical imaging of breast cancer oxyhemoglobin flare correlates with neoadjuvant chemotherapy response one day after starting treatment. Proc. Natl Acad. Sci. USA108, 14626–14631 (2011). ArticleCASPubMedPubMed CentralGoogle Scholar
  119. Schaafsma, B. E. et al. Optical mammography using diffuse optical spectroscopy for monitoring tumor response to neoadjuvant chemotherapy in women with locally advanced breast cancer. Clin. Cancer Res.21, 577–584 (2015). ArticlePubMedGoogle Scholar
  120. Jiang, S. et al. Predicting breast tumor response to neoadjuvant chemotherapy with diffuse optical spectroscopic tomography prior to treatment. Clin. Cancer Res.20, 6006–6015 (2014). ArticleCASPubMedPubMed CentralGoogle Scholar
  121. Fang, Q. et al. Combined optical and X-ray tomosynthesis breast imaging. Radiology258, 89–97 (2011). ArticlePubMedPubMed CentralGoogle Scholar
  122. Eggebrecht, A. T. et al. Mapping distributed brain function and networks with diffuse optical tomography. Nat. Photon.8, 448–454 (2014). ArticleCASGoogle Scholar
  123. White, B. R., Liao, S. M., Ferradal, S. L., Inder, T. E. & Culver, J. P. Bedside optical imaging of occipital resting-state functional connectivity in neonates. Neuroimage59, 2529–2538 (2012). ArticlePubMedGoogle Scholar
  124. Kiesslich, R. et al. Confocal laser endoscopy for diagnosing intraepithelial neoplasias and colorectal cancer in vivo. Gastroenterology127, 706–713 (2004). ArticlePubMedGoogle Scholar
  125. Buchner, A. M. et al. Comparison of probe-based confocal laser endomicroscopy with virtual chromoendoscopy for classification of colon polyps. Gastroenterology138, 834–842 (2010). ArticlePubMedGoogle Scholar
  126. Moussata, D. et al. Confocal laser endomicroscopy is a new imaging modality for recognition of intramucosal bacteria in inflammatory bowel disease in vivo. Gut60, 26–33 (2011). ArticlePubMedGoogle Scholar
  127. Sonn, G. A. et al. Optical biopsy of human bladder neoplasia with in vivo confocal laser endomicroscopy. J. Urol.182, 1299–1305 (2009). ArticlePubMedGoogle Scholar
  128. Hsiung, P.-L. et al. Detection of colonic dysplasia in vivo using a targeted heptapeptide and confocal microendoscopy. Nat. Med.14, 454–458 (2008). ArticleCASPubMedPubMed CentralGoogle Scholar
  129. Sturm, M. B. et al. Targeted imaging of esophageal neoplasia with a fluorescently labeled peptide: first-in-human results. Sci. Transl. Med.5, 184ra61 (2013). ArticlePubMedCASGoogle Scholar
  130. Bird-Lieberman, E. L. et al. Molecular imaging using fluorescent lectins permits rapid endoscopic identification of dysplasia in Barrett's esophagus. Nat. Med.18, 315–321 (2012). ArticleCASPubMedGoogle Scholar
  131. Pan, Y. et al. Endoscopic molecular imaging of human bladder cancer using a CD47 antibody. Sci. Transl. Med.6, 260ra148 (2014). ArticlePubMedCASGoogle Scholar
  132. Burggraaf, J. et al. Detection of colorectal polyps in humans using an intravenously administered fluorescent peptide targeted against c-Met. Nat. Med.21, 955–961 (2015). ArticleCASPubMedGoogle Scholar
  133. Fitzgerald, R. Assessing the potential impact of fluorescence angiography in preventing limb loss. Pod. Today 29, http://www.podiatrytoday.com/assessing-potential-impact-fluorescence-angiography-preventing-limb-loss (2016).
  134. Choi, M., Kwok, S. J. J. & Yun, S. H. In vivo fluorescence microscopy: lessons from observing cell behavior in their native environment. Physiology30, 40–49 (2015). ArticleCASPubMedPubMed CentralGoogle Scholar
  135. Dimitrow, E. et al. Sensitivity and specificity of multiphoton laser tomography for in vivo and ex vivo diagnosis of malignant melanoma. J. Invest. Dermatol.129, 1752–1758 (2009). ArticleCASPubMedGoogle Scholar
  136. Palczewska, G. et al. Noninvasive two-photon microscopy imaging of mouse retina and retinal pigment epithelium through the pupil of the eye. Nat. Med.20, 785–789 (2014). ArticleCASPubMedPubMed CentralGoogle Scholar
  137. Saar, B. G. et al. Video-rate molecular imaging in vivo with stimulated Raman scattering. Science330, 1368–1370 (2010). ArticleCASPubMedPubMed CentralGoogle Scholar
  138. Ji, M. et al. Detection of human brain tumor infiltration with quantitative stimulated Raman scattering microscopy. Sci. Transl. Med.7, 309ra163 (2015).
  139. Yao, J. et al. High-speed label-free functional photoacoustic microscopy of mouse brain in action. Nat. Methods12, 407–410 (2015). ArticleCASPubMedPubMed CentralGoogle Scholar
  140. Yang, J.-M. et al. Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo. Nat. Med.18, 1297–1302 (2012). ArticleCASPubMedGoogle Scholar
  141. Galanzha, E. I. et al. In vivo magnetic enrichment and multiplex photoacoustic detection of circulating tumour cells. Nat. Nanotech.4, 855–860 (2009). ArticleCASGoogle Scholar
  142. Ermilov, S. A. et al. Laser optoacoustic imaging system for detection of breast cancer. J. Biomed. Opt.14, 24007 (2009).
  143. Kitai, T. et al. Photoacoustic mammography: initial clinical results. Breast Cancer21, 146–153 (2014). ArticlePubMedGoogle Scholar
  144. Scope, A. et al. In vivo reflectance confocal microscopy of shave biopsy wounds: feasibility of intraoperative mapping of cancer margins. Br. J. Dermatol.163, 1218–1228 (2010). ArticleCASPubMedPubMed CentralGoogle Scholar
  145. Guitera, P. et al. In vivo confocal microscopy for diagnosis of melanoma and basal cell carcinoma using a two-step method: analysis of 710 consecutive clinically equivocal cases. J. Invest. Dermatol.132, 2386–2394 (2012). ArticleCASPubMedGoogle Scholar
  146. Scarcelli, G., Besner, S., Pineda, R., Kalout, P. & Yun, S. H. In vivo biomechanical mapping of normal and keratoconus corneas. JAMA Ophthalmol.133, 480–482 (2015). ArticlePubMedPubMed CentralGoogle Scholar
  147. Tsui, C., Klein, R. & Garabrant, M. Minimally invasive surgery: national trends in adoption and future directions for hospital strategy. Surg. Endosc. Other Interv. Tech.27, 2253–2257 (2013). ArticleGoogle Scholar
  148. Omata, J. et al. Acute gastric volvulus associated with wandering spleen in an adult treated laparoscopically after endoscopic reduction: a case report. Surg. Case Reports2, 47 (2016).
  149. Jourdan, I. C. et al. Stereoscopic vision provides a significant advantage for precision robotic laparoscopy. Br. J. Surg.91, 879–885 (2004). ArticleCASPubMedGoogle Scholar
  150. Vahrmeijer, A. L., Hutteman, M., van der Vorst, J. R., van de Velde, C. J. H. & Frangioni, J. V. Image-guided cancer surgery using near-infrared fluorescence. Nat. Rev. Clin. Oncol.10, 507–518 (2013). ArticleCASPubMedPubMed CentralGoogle Scholar
  151. Nguyen, Q. T. & Tsien, R. Y. Fluorescence-guided surgery with live molecular navigation—a new cutting edge. Nat. Rev. Cancer13, 653–662 (2013). ArticleCASPubMedPubMed CentralGoogle Scholar
  152. Widhalm, G. et al. 5-Aminolevulinic acid induced fluorescence is a powerful intraoperative marker for precise histopathological grading of gliomas with non-significant contrast-enhancement. PLoS ONE8, e76988 (2013). ArticleCASPubMedPubMed CentralGoogle Scholar
  153. Stummer, W. et al. Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol.7, 392–401 (2006). ArticleCASPubMedGoogle Scholar
  154. Choi, H. S. et al. Targeted zwitterionic near-infrared fluorophores for improved optical imaging. Nat. Biotechnol.31, 148–153 (2013). ArticleCASPubMedGoogle Scholar
  155. Hyun, H. et al. Structure-inherent targeting of near-infrared fluorophores for parathyroid and thyroid gland imaging. Nat. Med.21, 192–197 (2015). ArticleCASPubMedPubMed CentralGoogle Scholar
  156. Verbeek, F. P. R. et al. Near-infrared fluorescence sentinel lymph node mapping in breast cancer: a multicenter experience. Breast Cancer Res. Treat.143, 333–342 (2014). ArticlePubMedGoogle Scholar
  157. Van Der Vorst, J. R. et al. Near-infrared fluorescence-guided resection of colorectal liver metastases. Cancer119, 3411–3418 (2013). ArticleCASPubMedGoogle Scholar
  158. van Dam, G. M. et al. Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: first in-human results. Nat. Med.17, 1315–1319 (2011). ArticleCASPubMedGoogle Scholar
  159. Metildi, C. A. et al. Ratiometric activatable cell-penetrating peptides label pancreatic cancer, enabling fluorescence-guided surgery, which reduces metastases and recurrence in orthotopic mouse models. Ann. Surg. Oncol.22, 2082–2087 (2014). ArticlePubMedPubMed CentralGoogle Scholar
  160. Whitney, M. A. et al. Fluorescent peptides highlight peripheral nerves during surgery in mice. Nat. Biotechnol.29, 352–356 (2011). ArticleCASPubMedPubMed CentralGoogle Scholar
  161. Weissleder, R., Tung, C. H., Mahmood, U. & Bogdanov, A. In vivo imaging of tumors with protease-activated near-infrared fluorescent probes. Nat. Biotechnol.17, 375–378 (1999). ArticleCASPubMedGoogle Scholar
  162. Whitley, M. J. et al. A mouse-human phase 1 co-clinical trial of a protease-activated fluorescent probe for imaging cancer. Sci. Transl. Med.8, 320ra4 (2016). ArticlePubMedPubMed CentralCASGoogle Scholar
  163. Ehlers, J. P. et al. The prospective intraoperative and perioperative ophthalmic imaging with optical coherence tomography (PIONEER) study: 2-year results. Am. J. Ophthalmol.158, 999–1007 (2014). ArticlePubMedPubMed CentralGoogle Scholar
  164. Prati, F. et al. Angiography alone versus angiography plus optical coherence tomography to guide decision-making during percutaneous coronary intervention: the Centro per la Lotta contro l’Infarto-Optimisation of Percutaneous Coronary Intervention (CLI-OPCI) study. EuroIntervention8, 823–829 (2012). ArticlePubMedGoogle Scholar
  165. Kut, C. et al. Detection of human brain cancer infiltration ex vivo and in vivo using quantitative optical coherence tomography. Sci. Transl. Med.7, 292ra100 (2015).
  166. Ji, M. et al. Rapid, label-free detection of brain tumors with stimulated Raman scattering microscopy. Sci. Transl. Med.5, 201ra119 (2013). ArticlePubMedPubMed CentralCASGoogle Scholar
  167. Jermyn, M. et al. Intraoperative brain cancer detection with Raman spectroscopy in humans. Sci. Transl. Med.7, 274ra19 (2015). ArticleCASPubMedGoogle Scholar
  168. Celli, J. P. et al. Imaging and photodynamic therapy: mechanisms, monitoring, and optimization. Chem. Rev.110, 2795–2838 (2010). ArticleCASPubMedPubMed CentralGoogle Scholar
  169. Yang, V. X. D., Muller, P. J., Herman, P. & Wilson, B. C. A multispectral fluorescence imaging system: design and initial clinical tests in intra-operative Photofrin-photodynamic therapy of brain tumors. Lasers Surg. Med.32, 224–232 (2003). ArticlePubMedGoogle Scholar
  170. Ntziachristos, V. et al. Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate. Proc. Natl. Acad. Sci. USA101, 12294–12299 (2004). ArticleCASPubMedPubMed CentralGoogle Scholar
  171. Atreya, R. et al. In vivo imaging using fluorescent antibodies to tumor necrosis factor predicts therapeutic response in Crohn's disease. Nat. Med.20, 313–318 (2014). ArticleCASPubMedPubMed CentralGoogle Scholar
  172. Zhang, R. et al. Real-time in vivo Cherenkoscopy imaging during external beam radiation therapy. J. Biomed. Opt.18, 110504 (2013).
  173. Grotjohann, T. et al. Diffraction-unlimited all-optical imaging and writing with a photochromic GFP. Nature478, 204–208 (2011). ArticleCASPubMedGoogle Scholar
  174. Chen, B.-C. et al. Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution. Science346, 1257998 (2014).
  175. Yang, B. et al. Single-cell phenotyping within transparent intact tissue through whole-body clearing. Cell158, 945–958 (2014). ArticleCASPubMedPubMed CentralGoogle Scholar
  176. Mosk, A. P., Lagendijk, A., Lerosey, G. & Fink, M. Controlling waves in space and time for imaging and focusing in complex media. Nat. Photon.6, 283–292 (2012). ArticleCASGoogle Scholar
  177. Doane, T. L. & Burda, C. The unique role of nanoparticles in nanomedicine: imaging, drug delivery and therapy. Chem. Soc. Rev.41, 2885–2911 (2012). ArticleCASPubMedGoogle Scholar
  178. Youan, B. B. C. Chronopharmaceutical drug delivery systems: hurdles, hype or hope?. Adv. Drug Deliv. Rev.62, 898–903 (2010). ArticleCASPubMedPubMed CentralGoogle Scholar
  179. Jayakumar, M. K. G., Idris, N. M. & Zhang, Y. Remote activation of biomolecules in deep tissues using near-infrared-to-UV upconversion nanotransducers. Proc. Natl Acad. Sci. USA109, 8483–8488 (2012). ArticleCASPubMedPubMed CentralGoogle Scholar
  180. Yavuz, M. S. et al. Gold nanocages covered by smart polymers for controlled release with near-infrared light. Nat. Mater.8, 935–939 (2009). ArticleCASPubMedPubMed CentralGoogle Scholar
  181. Carter, K. A. et al. Porphyrin-phospholipid liposomes permeabilized by near-infrared light. Nat. Commun.5, 3546 (2014).
  182. Li, Y. et al. A smart and versatile theranostic nanomedicine platform based on nanoporphyrin. Nat. Commun.5, 4712 (2014).
  183. Phillips, E. et al. Clinical translation of an ultrasmall inorganic optical-PET imaging nanoparticle probe. Sci. Transl. Med.6, 260ra149 (2014). ArticlePubMedPubMed CentralCASGoogle Scholar
  184. Kircher, M. F. et al. A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle. Nat. Med.18, 829–834 (2012). ArticleCASPubMedPubMed CentralGoogle Scholar
  185. Lin, J. et al. Photosensitizer-loaded gold vesicles with strong plasmonic coupling effect for imaging-guided photothermal/photodynamic therapy. ACS Nano7, 5320–5329 (2013). ArticleCASPubMedPubMed CentralGoogle Scholar
  186. Liu, J. et al. Bismuth sulfide nanorods as a precision nanomedicine for in vivo multimodal imaging-guided photothermal therapy of tumor. ACS Nano9, 696–707 (2015). ArticleCASPubMedGoogle Scholar
  187. Spring, B. Q. et al. A photoactivable multi-inhibitor nanoliposome for tumour control and simultaneous inhibition of treatment escape pathways. Nat. Nanotech.11, 378–387 (2016). ArticleCASGoogle Scholar
  188. Pasparakis, G., Manouras, T., Vamvakaki, M. & Argitis, P. Harnessing photochemical internalization with dual degradable nanoparticles for combinatorial photo-chemotherapy. Nat. Commun.5, 3623 (2014).
  189. Lukianova-Hleb, E. Y. et al. On-demand intracellular amplification of chemoradiation with cancer-specific plasmonic nanobubbles. Nat. Med.20, 778–784 (2014). ArticleCASPubMedPubMed CentralGoogle Scholar
  190. Wilhelm, S. et al. Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater.1, 16014 (2016).
  191. Tong, R. & Langer, R. Nanomedicines targeting the tumor microenvironment. Cancer J.21, 314–321 (2015). ArticleCASPubMedGoogle Scholar
  192. Douglas, S. M., Bachelet, I. & Church, G. M. A logic-gated nanorobot for targeted transport of molecular payloads. Science335, 831–834 (2012). ArticleCASPubMedGoogle Scholar
  193. von Maltzahn, G. et al. Nanoparticles that communicate in vivo to amplify tumour targeting. Nat. Mater.10, 545–552 (2011). ArticleCASPubMedPubMed CentralGoogle Scholar
  194. Dai, B. et al. Programmable artificial phototactic microswimmer. Nat. Nanotech. http://dx.doi.org/10.1038/nnano.2016.187 (2016).
  195. Boyden, E. S., Zhang, F., Bamberg, E., Nagel, G. & Deisseroth, K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci.8, 1263–1268 (2005). ArticleCASPubMedGoogle Scholar
  196. Gradinaru, V., Mogri, M., Thompson, K. R., Henderson, J. M. & Deisseroth, K. Optical deconstruction of parkinsonian neural circuitry. Science324, 354–359 (2009). ArticleCASPubMedPubMed CentralGoogle Scholar
  197. Creed, M., Pascoli, V. J. & Luscher, C. Refining deep brain stimulation to emulate optogenetic treatment of synaptic pathology. Science347, 659–664 (2015). ArticleCASPubMedGoogle Scholar
  198. Williams, J. C. & Denison, T. From optogenetic technologies to neuromodulation therapies. Sci. Transl. Med.5, 177ps6 (2013).
  199. Chow, B. Y. & Boyden, E. S. Optogenetics and translational medicine. Sci. Transl. Med.5, 177ps5 (2013).
  200. Ramirez, S. et al. Activating positive memory engrams suppresses depression-like behaviour. Nature522, 335–339 (2015). ArticleCASPubMedPubMed CentralGoogle Scholar
  201. Iyer, S. M. et al. Virally mediated optogenetic excitation and inhibition of pain in freely moving nontransgenic mice. Nat. Biotechnol.32, 274–278 (2014). ArticleCASPubMedPubMed CentralGoogle Scholar
  202. Bruegmann, T. et al. Optogenetic control of contractile function in skeletal muscle. Nat. Commun.6, 7153 (2015).
  203. Busskamp, V. & Roska, B. Optogenetic approaches to restoring visual function in retinitis pigmentosa. Curr. Opin. Neurobiol.21, 942–946 (2011). ArticleCASPubMedGoogle Scholar
  204. Barrett, J. M., Berlinguer-Palmini, R. & Degenaar, P. Optogenetic approaches to retinal prosthesis. Vis. Neurosci.31, 345–354 (2014). ArticlePubMedPubMed CentralGoogle Scholar
  205. Kramer, R. H., Mourot, A. & Adesnik, H. Optogenetic pharmacology for control of native neuronal signaling proteins. Nat. Neurosci.16, 816–823 (2013). ArticlePubMedPubMed CentralGoogle Scholar
  206. Polosukhina, A. et al. Photochemical restoration of visual responses in blind mice. Neuron75, 271–282 (2012). ArticleCASPubMedPubMed CentralGoogle Scholar
  207. Mourot, A. et al. Rapid optical control of nociception with an ion-channel photoswitch. Nat. Methods9, 396–402 (2012). ArticleCASPubMedPubMed CentralGoogle Scholar
  208. Levitz, J. et al. Optical control of metabotropic glutamate receptors. Nat. Neurosci.16, 507–516 (2013). ArticleCASPubMedPubMed CentralGoogle Scholar
  209. Gaub, B. M. et al. Restoration of visual function by expression of a light-gated mammalian ion channel in retinal ganglion cells or ON-bipolar cells. Proc. Natl. Acad. Sci. USA111, E5574–E5583 (2014). ArticleCASPubMedPubMed CentralGoogle Scholar
  210. Melyan, Z., Tarttelin, E. E., Bellingham, J., Lucas, R. J. & Hankins, M. W. Addition of human melanopsin renders mammalian cells photoresponsive. Nature433, 741–745 (2005). ArticleCASPubMedGoogle Scholar
  211. Ye, H., Daoud-El Baba, M., Peng, R.-W. & Fussenegger, M. A synthetic optogenetic transcription device enhances blood-glucose homeostasis in mice. Science332, 1565–1568 (2011). ArticleCASPubMedGoogle Scholar
  212. Choi, M. et al. Light-guiding hydrogels for cell-based sensing and optogenetic synthesis in vivo. Nat. Photon.7, 987–994 (2013). ArticleCASGoogle Scholar
  213. Gao, L. et al. Epidermal photonic devices for quantitative imaging of temperature and thermal transport characteristics of the skin. Nat. Commun.5, 4938 (2014).
  214. White, M. S. et al. Ultrathin, highly flexible and stretchable PLEDs. Nat. Photon.7, 811–816 (2013). ArticleCASGoogle Scholar
  215. Wang, C. et al. User-interactive electronic skin for instantaneous pressure visualization. Nat. Mater.12, 899–904 (2013). ArticleCASPubMedGoogle Scholar
  216. Lochner, C. M., Khan, Y., Pierre, A. & Arias, A. C. All-organic optoelectronic sensor for pulse oximetry. Nat. Commun.5, 5745 (2014).
  217. Koh, A. et al. A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat. Sci. Transl. Med.8, 366ra165 (2016). ArticlePubMedPubMed CentralCASGoogle Scholar
  218. Lee, H. et al. An endoscope with integrated transparent bioelectronics and theranostic nanoparticles for colon cancer treatment. Nat. Commun.6, 10059 (2015).
  219. Mathieson, K. et al. Photovoltaic retinal prosthesis with high pixel density. Nat. Photon.6, 391–397 (2012). ArticleCASGoogle Scholar
  220. Kim, R.-H. et al. Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics. Nat. Mater.9, 929–937 (2010). ArticleCASPubMedGoogle Scholar
  221. Kim, T. et al. Injectable, cellular-scale optoelectronics with applications for wireless optogenetics. Science340, 211–216 (2013). ArticleCASPubMedPubMed CentralGoogle Scholar
  222. Montgomery, K. L. et al. Wirelessly powered, fully internal optogenetics for brain, spinal and peripheral circuits in mice. Nat. Methods12, 969–974 (2015). ArticleCASPubMedPubMed CentralGoogle Scholar
  223. Park, S. I. et al. Soft, stretchable, fully implantable miniaturized optoelectronic systems for wireless optogenetics. Nat. Biotechnol.33, 1280–1286 (2015). ArticleCASPubMedPubMed CentralGoogle Scholar
  224. Jeong, J.-W. et al. Wireless optofluidic systems for programmable in vivo pharmacology and optogenetics. Cell162, 662–674 (2015). ArticleCASPubMedPubMed CentralGoogle Scholar
  225. Folcher, M. et al. Mind-controlled transgene expression by a wireless-powered optogenetic designer cell implant. Nat. Commun.5, 5392 (2014).
  226. Ho, J. S. et al. Wireless power transfer to deep-tissue microimplants. Proc. Natl Acad. Sci. USA111, 7974–7979 (2014). ArticleCASPubMedPubMed CentralGoogle Scholar
  227. Lee, S. H., Jeong, C. K., Hwang, G.-T. & Lee, K. J. Self-powered flexible inorganic electronic system. Nano Energy14, 111–125 (2014). ArticleCASGoogle Scholar
  228. Bae, B. et al. Polymeric photosensitizer-embedded self-expanding metal stent for repeatable endoscopic photodynamic therapy of cholangiocarcinoma. Biomaterials35, 8487–8495 (2014). ArticleCASPubMedGoogle Scholar
  229. Choi, M., Humar, M., Kim, S. & Yun, S.-H. Step-index optical fiber made of biocompatible hydrogels. Adv. Mater.27, 4081–4086 (2015). ArticleCASPubMedPubMed CentralGoogle Scholar
  230. Nizamoglu, S. et al. Bioabsorbable polymer optical waveguides for deep-tissue photomedicine. Nat. Commun.7, 10374 (2015).
  231. Canales, A. et al. Multifunctional fibers for simultaneous optical, electrical and chemical interrogation of neural circuits in vivo. Nat. Biotechnol.33, 277–284 (2015). ArticleCASPubMedGoogle Scholar
  232. Humar, M. & Yun, S. H. Intracellular microlasers. Nat. Photon.9, 572–576 (2015). ArticleCASGoogle Scholar
  233. Cho, S., Humar, M., Martino, N. & Yun, S. H. Laser particle stimulated emission microscopy. Phys. Rev. Lett.117, 193902 (2016).
  234. van Allen, H. W. Some new applications of electricity and light in medicine. N. Engl. J. Med.160, 331–333 (1909). Google Scholar
  235. Jacques, S. L. Optical properties of biological tissues: a review. Phys. Med. Biol.58, R37–R61 (2013). ArticlePubMedGoogle Scholar
  236. Moritz, A. R. & Henriques, F. C. J. Studies of thermal injury: II. The relative importance of time and surface temperature in the causation of cutaneous burns. Am. J. Pathol.23, 695–720 (1947). CASPubMedPubMed CentralGoogle Scholar
  237. Srinivasan, R. Ablation of polymers and biological tissue by ultraviolet lasers. Science234, 559–565 (1986). ArticleCASPubMedGoogle Scholar
  238. Cain, C. P. et al. ICNIRP guidelines: revision of guidelines on limits of exposure to laser radiation of wavelengths between 400 nm and 1. 4 μm. Health Phys.79, 431–440 (2000). ArticleGoogle Scholar
  239. Thekaekara, M. P. Solar radiation measurement: techniques and instrumentation. Sol. Energy18, 309–325 (1976). ArticleGoogle Scholar

Acknowledgements

This work was supported by the US National Institutes of Health Director's Pioneer Award (DP1-OD022296) and grants P41-EB015903, R01-EY025454 and R01-CA192878, and National Science Foundation grants ECCS-1505569 and CMMI-1562863.